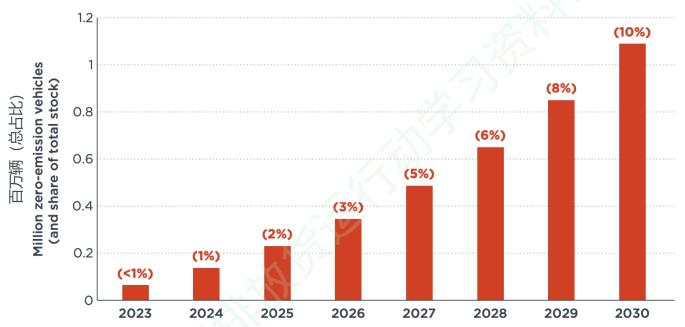
干线货运充电需求模型及兆瓦快充进展

HDV charging needs assessment model and megawatt charging updates

牛天林 Tianlin Niu 高级研究员 Senior Researcher Sept 13th, 2024

HDV充电需求模型

加州与美国联邦法规制定了零排放货车销量目标



配合财税补贴政策,大量零排放重型车将投入运营

通货膨胀抑制法案(IRA)提供了丰厚的补贴 补贴激励下的2023-2030年美国4-8级零排放中重型车保有量预测

- •30c tax credits for charging infrastructure (Alternative Fuel Vehicle Refueling Property Credit)
- •Up to \$40,000 tax credits for zero-emission commercial vehicles (Commercial Clean Vehicle Credit)

ICCT - HDV充电需求模型

根据不同地点、不同类型的充电方式分别进行充电需求模拟

场站 / 私人地点

公共

夜间充电

沿途补电 (CCS/MCS)

CCS: combined charging station MCS: megawatt charging station

- 公共桩随需充电的需求是基于交通数据 (美国HPMS)预测的,可以先聚焦于 重点活动区域
- 考虑车辆每日行驶特征、行驶能耗等

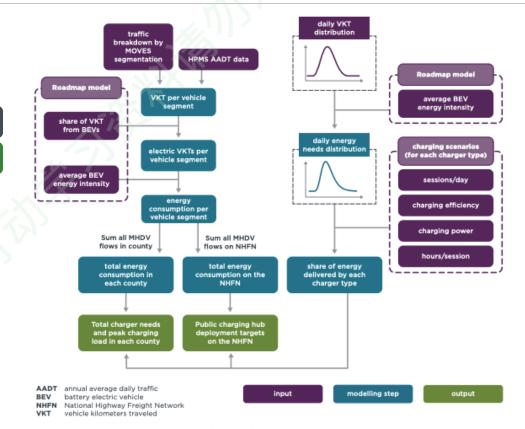


Figure 1. Modeling method to assess nationwide charging and refueling needs.

VKT时空分布解析

VKT 路网分布

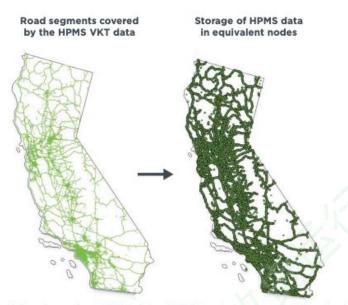
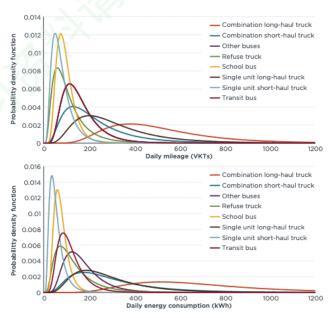



Figure 3. Example mapping of HPMS traffic and VKT data onto road segments (left) and nodes (right) for California.

车队每日VKT和能耗需求分布

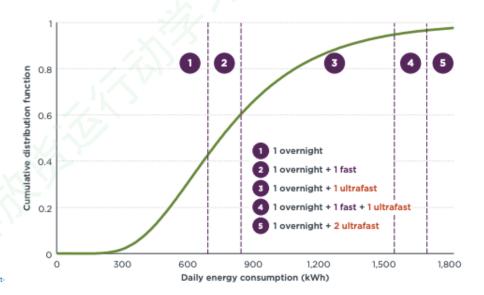
Figure 4. Probability density functions of daily VKT (top) and 2030 daily energy consumption (bottom) for all MHDV segments.

国际清洁交通委员会 THEICCT.ORG.CN

充电模式分析 - 兆瓦级快充的角色

功率

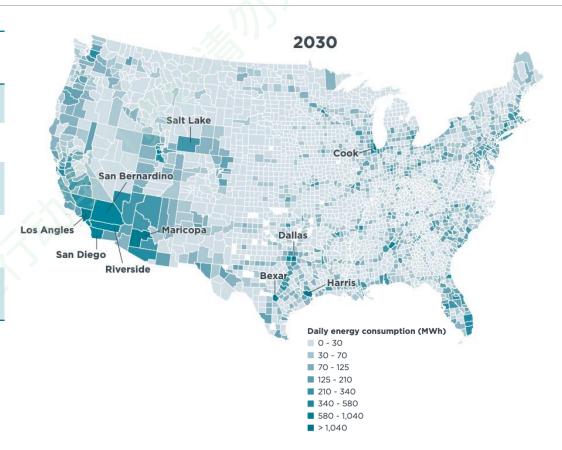
单日充电次数 最大次数


充电标准

夜间充电 沿途快充 沿途超快充

Charger type	Nominal power	Connector standard	Available for large-scale commercialization	Length of charging session	2023 sessions/day	Max sessions/day
Overnight	50-150 kW	ccs	<2023	up to 8h	1	1-1.5
Opportunity fast	350 kW	ccs	<2023	up to 0.5h	1	8
Opportunity ultra-fast	2 MW	MCS	2027	up to 0.5h	1	8

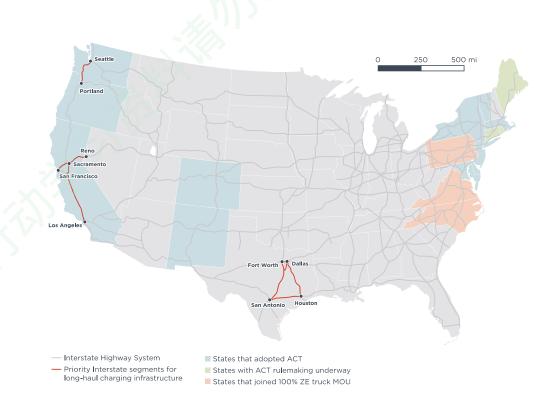
大范围商业化时间


充电时长

基于三阶段目标的充电需求预测

2030年 发展情况	4-8级 长途车辆	4-8级 全部车辆
保有量	200万	1100万
零排放车量	7万	110万
车队日均车 英里数	4.691Z	11亿
车队日均纯 电车英里数	1800万	9400万
车队每日零 排放车能耗	35,000 兆瓦时	140,000 兆瓦时

2030年目标可以通过最小化货站和廊道建设实现



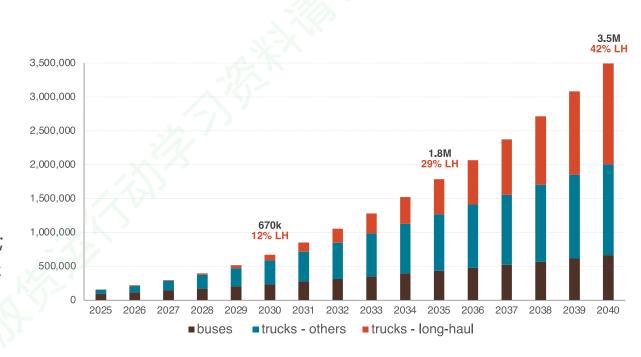
Limited number of freight hubs and corridors would be enough to ensure the EPA proposal can be met with sales of electric trucks

美国通话膨胀控制法案IRA设定了重型车新销量零排放渗透率在2030年达到39% - 48%之间的目标。

ICCT 预测如果制造商能够在这些道路上仅采用纯电货车,达到日均900万的纯电长途车英里活动水平,即可实现IRA2030年目标:

- 需在2,100英里的跨州高速部署基础设施
- 覆盖不到4%的全国高速货运网络
- 全部长途货运(车英里)10%电动化,部署充电站

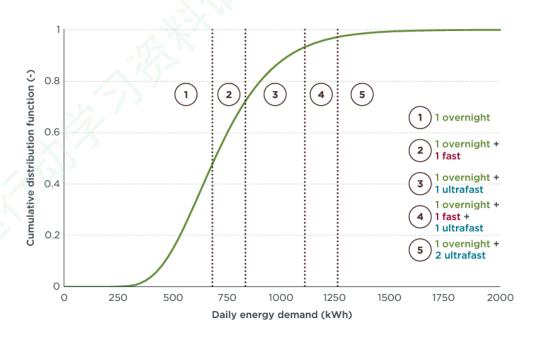
欧洲兆瓦级充电研究



在最新的HDV CO2 标准下,欧盟零排放HDV也将持续增长 ICCt

欧盟要求货车在2030年减排 43%, 2035年减排64%, 2040 年减排90%。

- 长途货运车辆保有量将持续 增高
- 预计, 欧盟纯电长途货车能 耗为每天33GWh (2030 年), 占HDV总能耗的48%; 到2040年增长到611GWh每 天,占HDV的80%

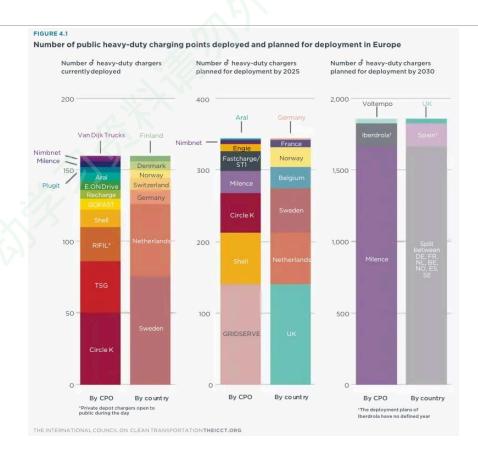

兆瓦级充电 (MCS) 在欧洲的角色

50%的长途货运车辆可以 仅仅依靠夜间充电的形式 进行补能

其余的50%的车辆需要结合夜间充电和快速充电,包括CCS和MCS;

5-LH truck with 800km driving range in 2030

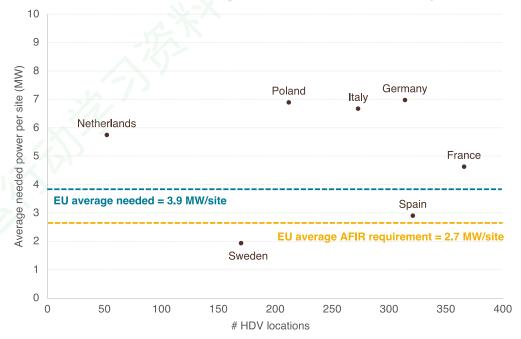
欧盟AFIR法案制定了公共基础设施部署的目标


Target date	Scope	Minimum capacity requirement	Minimum distance requirement
December 31, 2025	15%* of core and comprehensive TEN-T	One recharging pool with 1,400 kW of aggregated power	Every 120 km* in each direction of travel
	Urban node	One recharging pool with 900 kW of aggregated power	-
December 31, 2027	50% of core and comprehensive TEN-T	One recharging pool with 2,800 kW of aggregated power in the core TEN-T and 1,400 kW in the comprehensive TEN-T	Every 120 km* in each direction of travel
December 31, 2030	TEN-T core	One recharging pool with 3,600 kW of aggregated power	Every 60 km in each direction of travel
		One hydrogen refueling station	Every 200 km
	TEN-T comprehensive	One recharging pool with 1,500 kW of aggregated power	Every 100 km in each direction of travel
	Urban node	One recharging pool with 1,800 kW of aggregated power	-
		One hydrogen refueling station	-

^{*}A portion of the TEN-T can count towards the percentage coverage requirement, in each direction of travel, only if it is between two recharging pools separated by a maximum of **120 km**.

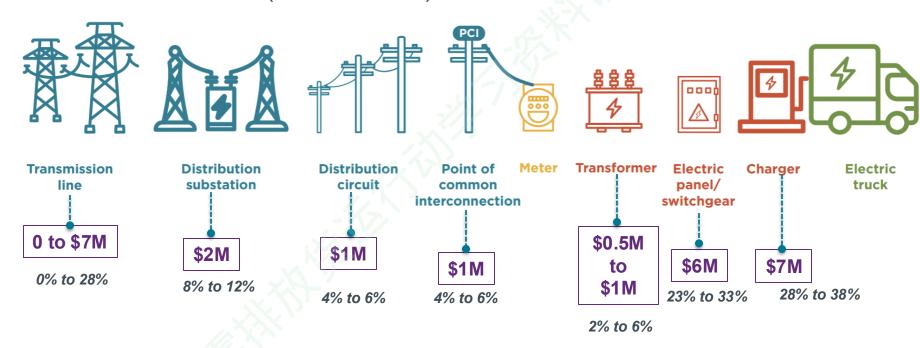
市场发展

- 2023年11月,欧洲已经建成的货车专用充电站共160个
- 2030年计划达到2400个
- 大多数是CCS, MCS仍在试点 阶段
- 瑞典和荷兰有望在2025年达到 总功率的目标,但也不能确保 他们达到AFIR的要求



部分国家市场需要MCS满足电动化发展需求

- HDV活动最频繁的地区需要达 到比AFIR更高的要求
- 对法国、德国、波兰、意大利、 荷兰来说,兆瓦级快充显然是 能够有效满足功率、补能需求 的技术
- 其他地区的站点并不一定的需求使用MCS

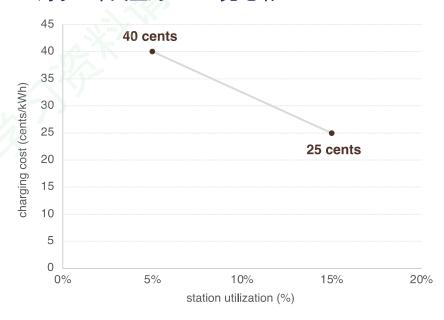

2030, # locations fixed by AFIR, 6-8 vehicles/day

兆瓦级充电电站成本

对于一个20MW的充电站 (50% 最大负荷)

国际清洁交通委员会 THEICCT, ORG, CN

Source: https://theicct.org/publication/tco-alt-powertrain-long-haul-trucks-us-apr23/


兆瓦级充电费用和使用率高度相关

根据当地柴油价格、财政激励和电池技术发展情况,电动和柴油卡车的TCO平价充电成本为20-30美分/千瓦时。

兆瓦级充电的成本和电站使用率高度挂钩:5%使用率时充电成本为每度电40美分;15%使用率时每度电成本降到25美分

对于一个典型的20MW充电站

感谢大家聆听参与! THANK YOU ALL E: Tianlin.Niu@theicct.org M&W: 13581686336

